

Table of Contents

1. Introduction.. 1

2. Probabilistic Relaxation............................. 2

2. 1. Hummel and Zucker's Relaxation Method 2

2.2. Compatibilityj Coefficients 5

2.2.1. Correlations 6

2.2.2. Mutual Information e

2.3. Peleg's Relaxation Method 10

2.4. Discussion 12

3. A General Purpose Arrayj Relaxaticon Implementation... 14

3.1. An Overview 14

3.2. Control Flow 16

3.3. Definition Enhancement and Displayj Programs 20

3.4. Discussion 22

4. Thresholding Using Relaxation24

4. 1. Light/Dark Relaxation 24

4.2. Alternate Light/Dark Versions 29

4. 2. 1. The Histogram Mean 29

4.2.2. Gaussian Fitting 30

*4.2.3. Multilabel Relaxation 31

4.2.4. Hand Computed Compatibilityj Coefficients 33

4.3. Dorderness 34

4.4. Discussion 36

5. Concluding Remarks.................................. 38

Table of Contents (continued)

Figures and Tables................................... 39

Appendix... 67

Bibliography... 77

-iv -

List of Tables

1. Hummel Compatibility Coefficients -- Signature 59

2. Peleg Compatibility Coefficients -- Signature 60

3. Hummel Compatibility Coefficients -- Chromosomes ... 61

4. Peleg Compatibility Coefficients -- Chromosomes 62

5. Hummel Compatibility Coefficients -- Clouds 63

6. Peleg Compatibility Coefficients -- Clouds 64

7. Hummel Compatibility Coefficients -- Tank 65

S. Peleg Compatibility Coefficients -- Tank 66

Accession For

?NTLS GQiA"I
DDC I

T) .i',iutl o1

P, c .t j itY i~o: 5

iAvail and/or

~DI sPecial

List of Figures

1. Updating Rule Properties 40

2. Package Control Flow 41

3. Initial Classification Error 42

4. Midpoint, Means and Gaussian Fitting Comparison 43

5. Original Image -- Signature 44

6. Original Image -- Chromosomes 45

7. Original Image -- Clouds 46

B. Original Image -- Tank 47

9. Hummel Method -- Signature 48

10. Peleg Method -- Signature 49

11. Hummel Method -- Chromosomes 50

12. Peleg Method -- Chromosomes 51

13. Hummel Method -- Clouds 52

14. Peleg Method -- Clouds 53

15. Hummel Method -- Tank 54

16. Peleg Method -- Tank 55

17. Effect of Hand Computed Coefficients 56

18. Peleg Method -- Blob 57

19. Effect of Borderness Initialization 58

-vi -

1. Introduction

Iterative techniques in image processing resemble the

processes that may take place in natural vision systems.

Noise cleaning, object extraction, line and edge extension,

all lend themselves to repetitive operations. A general

purpose iterative technique, probabilistic relaxation, has

been found to be useful in a wide range of applications. It

can be used for tasks ranging from very low level processing

such as noise cleaning, to very high level processes such as

scene labeling. This thesis examines the formulation for

probabilistic relaxation, introduces a general purpose

software system which allows easy and quick experimentation

using probabilistic relaxation techniques, and presents

applications of gray level relaxation to the extraction of

objects from images.

-1-

2. Probabilistic Relaxation

Quite often in digital image processing operations

in the immediate neighborhood of each pixel are performed in

order to determine certain properties which the pixel may

possess (gray level, edge strength, etc.). These local

properties are then used to classify the pixels and hence

aid in the extraction of information from the image.

Unfortunately, local operations are highly sensitive to the

presence of noise, especially so if the classification for

each pixel is independent of those of its neighbors. One

method used to correct for the effects of noise on local

operations is to iteratively update pixel classifications

based on the classifications of neighboring pixels, allowing

one iteration's results to be reinforced or attenuated at

the succeeding iteration. When applied over an entire image

in a parallel fashion this method is called "array

relaxation"

2.1. Hummel and Zucker's Relaxation Method

In C13 a method is proposed whereby each object

(e.g. each point) in a scene has a set of possible labels,

the weight of each label lying between 0 and 1, and the

sum of the weights of all possible labels for an object

being 1. Hence, the weight of a label L of an object can

be thought of as the probability that L is the correct

label for that object.

-2-

Given this probabilistic labeling of the pixels in

an image we now want to iteratively update the

probabilities. Certain properties of the relaxation updating

rule become desirable. The probability of a label L of a

pixel should be increased if those labels of the pixel's

neighbors which are highly compatible with label L have high

probabilities. The probability of label L should be

decreased if the high-probability labels of the neighbors

are incompatible with L. If the neighbors' labels have low

probabilities, their effect on label L should be minimal,

regardless of the compatibility between the labels. Figure 1

presents these properties in tabular form.

The compatibilities between the neighboring pixels'

labels can take on values in the range C-1 , 1, where a

negative value indicates incompatibility, a positive value

indicates compatibility, and a value near or at zero

indicates that the labels should have little or no effect on

one another. (Other ranges for the compatibilities are

equally valid; see Section 2.3). The formula given below

behaves the way we would want the change in a particular

label's probability to behave.

q(k) (L) = Ed. .E p k) (L')r. (L,L')

i J ~3L'

Here the d factor is a weighting of the point's neighbors'

contributions (the sum of the weights is 1) and the

r(L,L') factor is the compatibility of label L at pixel i

-3-

with label L' at pixel j.

From this can be defined the relaxation updating

rule itself which is applied in parallel to every pixel in

an image using the results of the k-th iteration to compute

those for iteration k+1:

_(k L (k)Pk+l) (L) I(L)[+ q (L)]
=(+)(12

Z pik) (L')[1 + q(k) (L')]

1 1

Here the factor Cl+q(L)] keeps the probability of any of the

pixel's labels nonnegative and the denominator is used to

normalize the label probabilities.

It can be seen that this formula does indeed

exhibit the desirable properties presented in the preceding

paragraphs and in Figure 1. Of course, other updating

rules can be defined which possess these properties (e.g.

see Section 2.3 or C23).

Though the formula is simple, it has proven to be

quite powerful in a wide range of applications. In £33, for

example, interior, edge, and noise points for dot clusters

have their strengths reinforced according to the

probabilities of neighboring interior, noise, and edge

labels. In this example the compatibility

coefficients were computed using distance as a key parameter

(i.e. a noise point far away from an interior point would

tend to be either more compatible than one close by, or#

outside a certain range, it would become irrelevant).

L'-4-

An interesting example of noise cleaning is given in

£4]. Here the initial probabilities represent a normalized

function of the observed gray levels. The

compatibility coefficients used are based on the

differences of possible labelings. When the resulting

formula is simplified a weighted average of the

neighborhood's label probabilities results, easing the

computation load.

An example involving pixel classification based upon

multispectral data is given in [5]. The initial

probabilities are computed by clustering the points and

using a function of the distance of a point from each

cluster mean as the initial label weight. The compatibility

coefficients were computed using mutual information, an

automatic process discussed in Section 2.2. Here the

improvements gained from the relaxation method were found to

be considerably better than those obtained from iterated

pre- and post-processing methods.

References to and summaries of other examples from

the wide range of applications of relaxation in image

processing are given in [6].

2.2. Compatibility Coefficients

In the preceding section a general purpose relaxation

formula was presented. Based upon initial probabilities and

compatibilities between labels good results can be obtained.

-5-

However, the highly important compatibility coefficients

(essentially the heuristic in the relaxation process) were

found to be computed in many different ways, depending on

the type of data being used. What is needed is a general

method to compute these coefficients. In C73 exactly this

has been done.

2.2.1. Correlations

Two methods of automatically computing compatibility

coefficients are presented in [73. One method, using

statistical correlations between labels, was found to

produce poor coefficients because labels which dominate in

an image (as "background" would in an "object-background"

labeling) would tend to be highly compatible with all labels

and so mask out any beneficial effects of the relaxation

process. This is corrected by weighting the coefficients by

the probability that the labels do not occur, hence

weakening coefficients involving dominant labels while

having little effect on those coefficients involving rarely

occurring labels. One inconvenience of this correction

scheme is that points obtaining little or no information

from their neighbors from one iteration to the next tend to

have their "rare" label probabilities increased, si:mply

because the point is considered to be its own neighbor and

so reinforces itself. This, too, can be "corrected" by

disregarding the self-support case.

-6

The initial correlation coefficients can be expressed

by:

r [Pi(L) - p(L)][Pj (L) - p(L)]
r.j(L,L') = 1 (1)

a(L)o(L')

where p (L)is the initial probability estimate for label L

at point i. 5(L) is the average p(L) over all i, and a(L) is

the standard deviation of p(L).

The weighting correction can then be applied giving

the compatibility coefficients:

r. (L,L') = (1 - p(L)][1 - p(L')]ri (L,L') (2)

When a relaxation process using these coefficients

was used to aid in curve enhancement the results obtained

after many iterations did not appear to differ much from the

results which a maximum likelihood classifier performed on

the initial probabilities would obtain. That is, choosing

the maximum of the initial label probabilities for each

point would have done essentially as well. Though it is not

clear whether this would hold in a variety of cases,

correlations as coefficients suffer from the fact that "ad

hoc" as opposed to analytical methods are used for their

computation.

7-

2.2.2. Mutual Information

The second method presented in E73 computes the

compatibility coefficients based on the mutual information

of the labels of neighboring points.

Initially, the probability of any point having label

L is estimated by taking the average over the entire image

of each point's label L probability:

1p(L) = .EPi(L) (1)
1

where N is the number of points in the image. Similarly the

joint probability of a point i having label L and its

neighbor j having label L' is estimated by

1
pij(LL') = .Pi(L)Pji(L') (2)

1) 1

where Pji is a particular neighbor of point Pi. The

conditional probability that point i is labeled L given that

neighboring point j is labeled L' can then be estimated by

pij(L,L') Ep . (L)pji(L')

1Pij (LIL) = (3)
p(L') .Zpi WL)

1

Now, the amount of information obtained as a result of being

told that an event A occurred (with probability p(A) of

occurring) is defined as

I(A) = -Log p(A) (4)

-9-

Hence, the conditional information obtained if we know that

B has occurred and we are told that A has occurred is

I(AIB) = -Log p(AIB) (5)

The contribution of B to the information about A can then be

expressed by the "mutual information"

I(A;B) = I(A) - I(AIB) (6)

= Log P(A[B) (7)

It can be seen that this allows the correlations between

events to be reflected in the values for I(A;B): if A is

positively correlated with B, I(A;B) will be high; if A is

negatively correlated with B, I(A;B) will be small.

Using equations (1), (3), and (7) the mutual

information coefficients can then be derived as

r .(L,L') = Log N i. Pi(L)\ , (8)
i(Eipi (L')

These values can vary outside the range C-1, 13, but the

instances outside the range C-5,53 are so rare that they can

be considered virtually impossible (indeed, when computing

these values over a single small image, they are

-9-

impossible). So, the coefficients produced by (8) can be

divided by 5 to obtain the correct range.

The use of mutual information values as compatibility

coefficients produces good results in the curve enhancement

example, results which are as good as those obtained using

modified correlations. Section 4 reconfirms this with

examples of thresholding using relaxation in which mutual

information was used to compute the compatibility

coefficients. The straightforward computations involved in

mutual information and its analytical justifiability were

major factors in its selection as the method of automatic

coefficient computation available in the software package

(see Section 3).

2.3. Peleg's Relaxation Method

A new formula for probabilistic relaxation is

presented in [83. This formula not only has the advantage of

being analytically derived using probability theory, but

also can be easily expanded to N-tuple interactions rather

than interactions between an object (point) and a single

neighbor (N-tuples are useful in handwriting analysis, for

example, where each object's labels consist of the letters

of the alphabet. N-tuple relaxation will not be discussed

further in this paper.).

Peleg's relaxation method differs from that of Hummel

and Zucker in two ways: (1) the initial probabilities which

- 10 -

are updated are directional, i.e., an object has its

probabilities updated with respect to a single neighbor

only, not all neighbors together; (2) a point is not

considered to be its own neighbor, hence there is no self-

support. A "post-processing" step over all the neighbor-

relative probabilities (averaging) is used to derive the

next iteration's nondirectional probabilities.

As with Hummel-Zucker relaxation we first have a

value which acts as we would want a change in a label's

probabilities to behave. We then multiply the point's label

probability by this value to obtain the intermediate result:

ij (L) = Pik) (L) Z pk) (L')rij(L,L')

Note that this q value intrinsically takes into account

neighbor j. The r(L,L') factor, still called a compatibility

coefficient, is in fact actually derived along with the rest

of the updating rule from probability theory. Quite similar

to the mutual information coefficient, it is computed as:

ij(L,L') p (L)p(L (2)

Like mutual information, these coefficients can be computed

from the initial label probabilities and will remain static

throughout the relaxation process.

- 11

To reconvert the q values to be between zero and one

a standard normalization is done:

(L)
_ (k) (L ij (3)
p j (L) = q .(L')

L'

These updated label probabilities are still directional in

nature. To derive nondirectional probabilities an average

over all neighbors can be taken:

(Jk+l) (L) =LYp 9 9 (L) (4)
1 N ()

Averaging, though perhaps not the optimal method of

computing the probability estimates, was found in practice

to produce better results than a computationally more
r

complex normalized minimum function. Peleg's relaxation

scheme as implemented in the software package uses averaging

of pairwise estimates.

2.4. Discussion

Of the two relaxation methods presented in the

preceding sections, that proposed by Peleg seems to be more

strict in its derivation. Claims were made in c8] that it

also seems to work slightly better than standard relaxation

using two radically different domains. As can be seen in

the application to thresholding in Section 4, relaxation

according to Peleg does not necessarily perform better than

standard relaxation in all cases. Both methods were

-12 -

therefore implemented in the software package.

No optimal way to determine compatibility

coefficients has yet been devised. Mutual information lends

itself to easy application with probabilistic images but

pays no regard to the actual meaning of the labels. It does,

unlike general purpose hand computed coefficients, allow

some image content information to be used in the relaxation

process.

-13-

3. A General Purpose Array Relaxation Implementation

Image processing techniques based on probabilistic

relaxation are becoming increasingly common. Each

application has usually been uniquely implemented by the

individuals doing the research, tailored to very specific

needs. Due to the varying parameters in the problem at hand

such as number of possible labels, size of a point's

neighborhood and number of interacting relaxation processes,

variations on the relaxation formula are often directly

encoded in software along with initial probability estimate

computation. As might be expected, this leads to a great

duplication of effort. The software package presented herein

allows each user to quickly create problem specific

compatibility coefficients and relaxation programs, freeing

him or her to concentrate on computing the initial

probabilities and doing the actual processing of data.

3.1. An Overview

In order to make a software package general enough to

be used for a wide variety of problems a determination must

be made as to what should be allowed to change and what

should remain static over any possible variation of problem

definition. In the relaxation domain a number of items which

should be allowed to vary are present. These include the

image size, the number of labels, the number of neighbors a

point possesses (i.e. the size of a pixel's neighborhood),

- 14 -

the relaxation method to use, and, in some cases, the number

of interacting relaxation processes. Some of these lend

themselves very easily to run time computation. Others, when

computed at run time, tend to slow down the execution of the

routine due to the accommodations necessary in the code. For

this reason, some variables are allowed to change only up to

the time of compilation (such as the relaxation method)

while others can be varied at run time.

The package consists of:

a) programs to compute compatibility coefficients

according to one of the two formulas presented in

Section 2;

b) programs to compute one iteration of relaxation

by the Hummel-Zucker or Peleg method;

c) a display program which will display that label

of a point which has a probability greater than

any other as a gray level;

d) an interactive neighborhood definition program

which allows the user to set up a point's

neighborhood to be any of the points within a

maximum sized neighborhood;

e) an interactive program to allow the user to

hand-compute the compatibility coefficients.

The automatic coefficient computation programs and

the relaxation programs are compiled according to parameters

which the user inputs.

- 15 -

r

3.2. Control Flow

The software package is implemented on a PDP11/45

computer running Bell Laboratory's UNIX timesharing

operating system [93. Utilizing top level Shell commands,

Shell command files, and modular routines written in the C

programming language, the package allows the user to create

problem-specific programs in a relatively short time.

Like other operating systems, UNIX has a top level

command interpreter. Under UNIX the interpreter, called the

Shell E103, differs from most command interpreters in that

it has the capability of modifying the environment in which

commands run, even to the extent that commands themselves

are not defined until run time. This is possible due in

part to a number of programming mechanisms which are quite

similar to those found in structured programming languages,

such as variable assignment, conditional execution of

commands through the use of the "if" statement, and the

passing of parameters. The latter feature provides a gentle

push to the programmer to modularize any software written

for the Shell, i.e. to create top level commands each of

which performs only part of the processing desired, making

each part very much easier to debug and so speeding up the

programming task. When combined with other commands in a

Shell "command file" one obtains what is essentially a

highly structured program, a Shell program. The relaxation

software package is designed around this philosophy.

-16 -

Modular in form, the package allows a user to create

problem-specific relaxation programs very easily. Figure 2

illustrates the general flow of control. Initially the gross

outline of the desired relaxation process is determined by

arguments on the call to the top level Shell program

"setup". The arguments to this program define the

relaxation method to use (Hummel-Zucker or Peleg), the

number of possible labels which a point may have, and

optionally, the maximum number of columns and rows to be

considered as containing a point's neighborhood (the default

maximum neighborhood size being 3 by 3). The arguments also

help determine the flow of control of the setup program,

that is, whether a Shell subprogram for relaxation program

creation or a small C program for package description will

be run. The latter routine allows a first time user to sit

down at a console and use the package with a minimal

foreknowledge of the ways the package can be used.

If the user inputs (either keyed in or from a file)

the correct syntax for the desired relaxation method then a

Shell subprogram will be run. This subprogram, whether for

the Hummel-Zucker or Peleg relaxation method, will initially

run a C routine to construct a file of parameters for later

use by the compilation phase. The parameters consist of the

number of labels, maximum number of columns and maximum

number of rows in a point's neighborhood, plus a set of

"event" flags computed from the preceding three parameters

to be used to cause a change in program execution when the

- 17 -

user is actually running the coefficient computation or

relaxation programs. For example, when an image processing

program is first started some initialization sequence, such

as reading in a given number of rows of data, must usually

be performed. Similarly, when operating in a neighborhood

around a point care must be taken to remain within the

image's boundaries. The calculated parameters ensure that

there are no violations of the probabilistic image's

boundaries.

Upon completion of the construction of the parameter

file the Shell subprogram will enter a compilation phase to

create the two main programs for the user.

One program created automatically for the user can be

used to compute the compatibility coefficients according to

formula (8) of Section 2.2.2 or formula (2) of Section 2.3

depending on the relaxation method chosen. The coefficient

computation programs though static with regard to the number

of possible labels, allows both the image size and the

number of neighbors each pixel has to vary. These two

seemingly minor attributes none the less contribute greatly

to the utility of both this program and the package in

general. A user may run the coefficient computation program

on a large image, using the resulting coefficients in the

relaxation program on smaller images. Additionally,

comparisons can be made of the differences between

coefficients produced from large and small (though of

- 19 -

similar content) images. Compatibilities computed over

different neighborhoods can also be compared to those

analytically derived (in the two label application presented

in Section 4, for example, a neighbor to the left of a pixel

should have the same coefficients as one to the right).

The program produced by this part of the compilation

phase is placed in the user's current directory under the

name "*compat", where '*' is either 'h' or 'p' depending on

whether Hummel-Zucker or Peleg relaxation is chosen.

The Shell subprogram will next construct and compile

the relaxation routine. This routine will be an

implementation of formulas (1) and (2) of Section 2.1 or

formulas (1), (3), and (4) of Section 2.3, again depending

on the relaxation method chosen. Items allowed to vary at

run time are image size, neighborhood definition, and, if

the Peleg method is chosen, the number of interacting

relaxation processes (More than one process is desired in

cases such as an edge-interior combination, where the

presence of a neighboring point with a strong edge label

should have influence over the interior-exterior labeling of

the current point.). Multiprocess relaxation is identical to

that with a single process until the final normalization is

performed (formula (4), Section 2.3). At this point each

label is normalized only with respect to the process set to

which it belongs.

- 19 -

The relaxation program produced is placed in the

user's current directory under the name "*relax" ('* h =

or 'p'). Each time this program is run the input

probabilistic image will be replaced by one produced by one

iteration of the selected relaxation method.

Upon completion of the compilation phase the Shell

subprogram will return to the main program "setup" which

will display a message indicating successful completion and

return control to the top level UNIX system.

The user has two options available with regard to

running the programs produced by "setup". They may be

directly invoked at the top command level (thus computing

one iteration of relaxation) or they may be installed in a

Shell program which may contain a programmed loop to compute

many iterations. In either case the programs may be run in

the foreground (the user must wait for a program to finish

before doing any other processing) or in the background (the

user is immediately free to do some other task).

3.3. Definition Enhancement and Display Programs

The preceding section described the automatic

creation of coefficients and relaxation programs. These

programs are sufficient for experiments in relaxation on

images. However, the software package contains programs

which can enhance those presented previously, as well as

allow a wider domain of problems to be more easily

- 20 -

investigated.

Occasionally a user wants the neighborhood of each

pixel to be defined as something other than an m by n

rectangle. A program provided in the package allows the user

to interactively define a point's neighborhood to consist of

any of the points within a maximum neighborhood size (not

necessarily all the points). A variable neighborhood

definition permits the user to quickly and easily test the

effect of different neighborhoods on the results of

relaxation. For example, the difference between four and

eight neighbor reinforcement can be readily checked.

Additionally, as in C113, an unusually shaped neighborhood

can be used to detect and enhance particular types of

regions.

If mutual information is not the desired method for

compatibility coefficient estimation a program in the

package allows the coefficients to be interactively defined

for each neighbor of a pixel. Since the coefficients are

the heuristic behind the relaxation process, allowing them

to be "hand-tuned" greatly increases the information

attainable by the user as to the effects of relaxation.

Section 4.2.4 examines the use and effect of hand-computed

compatibility coefficients.

After one or more iterations of relaxation have been

applied to an image a user usually would like to determine

the effect on the initial image. One measure of the effect

-21-

of relaxation is to note the change in entropy of an image

from one iteration to the next. Graphic illustrations of the

entropy of probabilistic images following relaxation are

given in C123. Another way to determine the effect of

relaxation is to actually display the probabilistic image as

a gray level (or color) picture. This can be done by taking

the maximum valued label of each point and displaying it as

a gray level. The package contains a program which will

convert a probabilistic image into a gray level picture. If

there are two labels per pixel the maximum label for each

pixel will be displayed as a varying gray level depending on

label strength (one label, if maximum, will be converted to

the range gray through black, the other, if maximum, to the

range gray through white). The figures in Section 4

illustrate this conversion. If there are more than two

labels per pixel the maximum label will be displayed as a

constant gray level regardless of label strength (each label

has a distinct gray level initially assigned to it which

will be displayed if the label is the maximum over all the

point's labels). [53 has figures illustrating multilabel

conversion.

3.4. Discussion

The software package has been used by a number of

researchers studying aspects of the use of probabilistic

relaxation on images. Variations in the problems studied

would have previously required considerably more time to

-22-

create task-oriented relaxation programs. Section 4 examines

one of these applications: the extraction of objects from

backgrounds using gray level based relaxation.

- 23 -

4. Thresholding Using Relaxation

Thresholding can be used on images to extract objects

from their backgrounds. If an image is noisy, however, the

results obtained by thresholding will also tend to be noisy.

In addition, if there are regions in the image (unbounded by

edges) having fluctuations in gray level which cross the

threshold, they may also be extracted along with the

objects. Relaxation can be used to improve on the results

obtained by thresholding.

4.1. Light/Dark Relaxation

In the simplest method of thresholding by relaxation

each pixel is initially assigned a "light" and "dark"

probability based on its gray level (so Light/Dark

relaxation in this case involves two-label classification).

These probabilities are than iteratively updated based on

the probabilities at the eight immediately neighboring

points. In order to threshold we would want light to

reinforce light and dark dark. Hence noise points, which are

not similar to their neighbors, tend to have their label

probabilities adjusted in such a way as to become more

consistent with those of their neighbors, while all points

are shifted to one of the two extremes of light and dark.

Eventually, points of a light object have their light

probabilities become uniformly high (and vice versa),

allowing thresholding to yield considerably better results.

-24-

Let LOW be the lowest gray level in an image to be

thresholded by relaxation. Similarly let HIGH be the

highest gray level and assume that a point P has gray level

GL so that

LOW .le. GL .Ae. HIGH for all P.

Taking LOW as corresponding to the dark end of the gray

level range we can then estimate the probability that P is

dark by

p(DARK) - (HIGH - GL) / (HIGH - LOW)

and the probability that P is light by

p(LIGHT) = (GL - LOW) / (HIGH - LOW)

- 1 - p(DARK)

Given this initial probability estimate of the labels of an

image's points the computation of the compatibility

coefficients can be automatically performed by the package

according to either formula (8) of Section 2.2.2 or formula

(2) of Section 2.3 depending on the relaxation method

chosen.

It should be noted that the compatibilities between

neighboring points' labels should be symmetrical. Indeed

with an ideal image there would be only three distinct

numbers for coefficients (LIGHTILIGHT, DARK:DARK, and

LIGHTIDARK). However, due to the fact that the coefficients

-25-

are computed from the nonideal images themselves, the values

can vary depending on direction. The differences between

directional values should still be slight for any image

which contains either single objects with edges in all

directions or many variously oriented but thin (and so

essentially unidimensional) objects. An example of the

former is ink splattered on a piece of paper; of the latter,

thin lines drawn in random orientations.

Both relaxation methods were applied to a group of

four images having varying content and gray level ranges: a

signature, chromosomes, a LANDSAT picture of clouds over

water, and a FLIR image of a tank (Figures 5 through 8.

Because each histogram has been rescaled, its shape, not the

individual gray level bin values, is significant). All the

images have gray levels that are broadly distributed over

the gray level range, a fact that is crucial to the simple

initialization scheme described on the preceding page. Had

there been a point or group of points sufficiently light or

dark so as to cause most of the other points in the image to

fall in the same half of the gray level range, errors in

classification could have resulted. Figure 3 illustrates

this problem. Note that even though there are two distinct

peaks in the histogram, the presence of one noise point has

forced all other points to be labeled "light", so that the

relaxation process would degrade the initial probabilities.

Section 4.2 discusses initialization procedures which can

overcome this problem.

- 26 -

With both relaxation methods the compatibility

coefficients were computed using the package-supplied mutual

information program. They are shown in Tables 1 through 8.

As expected there are slight variations in the values for

the different directions of the neighbors, but it can be

seen that these variations are relatively slight. In

addition, note that the coefficients obtained from one image

are quite similar to those obtained from any other image.

In C73 results of curve enhancement experiments showed that

coefficients produced from one image could be used with a

relaxation operator on an entirely different image as long

as it contained a "reasonable" set of curves. Two label

gray level compatibility coefficients behave similarly.

Figures 9 through 16 show the results of eight

iterations of relaxation for each image using both Hummel-

Zucker and Peleg relaxation. Note that with both methods the

thin lines in the signature tend to thicken and the tank's

interior tends to fill in (similar effects on the cloud and

chromosomes are not as readily discernable). This is a

result of using mutual information coefficients; infrequent

label pairs have higher mutual information. That this is an

undesirable effect is open to question. Noise points are

still eliminated, points with high probability LIGHT labels

surrounded by similar points are reinforced (and vice

versa), and points along the objects' edges tend to go

either way. Only in those cases in which a point has one or

more neighbors with the same label (but still in the

- 27 -

minority) will filling take place. An argument could be made

that for a threshold-like scheme this may indeed be the

effect desired.

On examination of the figures one finds that the

Hummel-Zucker relaxation method appears to produce results

more quickly than that of Peleg. This may be an artifact of

the self-support present in the Hummel-Zucker method

combined with the simple nature of the processing. However,

if one disregards the number of iterations, both relaxation

methods produce similar effects en the images.

With both relaxation methods the discrimination

between light and dark regions becomes more distinct from

one iteration to the next. As the histograms show, the

points gradually shift toward one of the two gray scale

extremes, creating two spikes with a nearly empty valley.

Empirical tests have shown that the points represented by

the valley are those which are on the edges of the objects

where label reinforcement is expectedly not as strong, while

the peaks represent those points surrounded by high

probability similarly labeled points. Noise points, present

as thin irregular streaks in the tank image, for example,

have had their label probabilities shifted towards those of

their neighbors, and, in general, are represented on the

inside shoulders of the two peaks.

The results after the arbitrarily chosen eight

iterations demonstrate that relaxation is a viable method of

- 28 -

producing a threshold-like effect. The simple initial

probability estimation program combined with the software

provided by the package were sufficient to test the effects

of probabilistic labeling. However, it was shown that the

initialization procedure was prone to errors. The next

section examines variations of light/dark relaxation, some

which are designed to overcome this problem.

4.2. Alternate Light/Dark Versions

Gray level relaxation can be used to aid in the

extraction of objects from a background even when the image

contains considerable noise. Based on an initial label

probability estimate at each point the results after a few

iterations are quite good. But the initialization process

itself may not correctly take into account idiosyncrasies of

the image at hand. This and the following section examine

alternate methods of initial probability estimation.

4.2.1. The Histogram Mean

The initialization method presented in the previous

section was extremely vulnerable to misclassification due to

the use of the midpoint of the histogram as the initial

light/dark transition. One initialization variation which

can largely avoid similar misclassifications is to use the

mean of the histogram as the light/dark transition point.

- 29 -

Let LOW, HIGH, P, and GL be as defined in the

previous section and let M be the image's mean gray level.

If GL is less than M then the probability that P is dark can

be estimated by

p(DARK) - .5 + (.5(M - GL) / (M - LOW))

and the probability that P is light by

p(LIGHT) = I - p(DARK).

Similarly, if GL is greater than M then the probability that

P is light is

p(LIGHT) = .5 + (.5(GL - M) / (HIGH - M))

and the probability that P is dark is

p(DARK) = I - p(LIQHT).

If GL is the same as M both formulas give equal values for

p(LIGHT) and p(DARK).

This initialization scheme will correctly handle

strong biasing of an image's histogram caused by bins which

are insignificant but radically different in gray level.

4.2.2. Gaussian Fitting

An initialization method which will also correct for

a skewed histogram was examined in C123. Gaussian curves are

fitted to the image's histogram. Each label probability is

-30-

then computed Prom the Gaussian curves. Unlike the previous

scheme, this will allow label probabilities to more closely

represent the region membership of a point, especially in

those cases in which one region greatly exceeds the other in

area. Figure 4 illustrates this. Had the histogram midpoint

or mean been used as the light/dark transition, many points

would have been falsely biased toward a LIGHT labeling.

Using Gaussian curves produces more correct initial label

probability estimates.

Gaussian curve fitting has the advantage that it can

be trivially extended to more than two labels, for example,

allowing images where there are objects both darker and

lighter than the background to be handled. It has the

disadvantage of needing at least a bimodal histogram in

order to fit more than one curve, a problem not present in

the previous two methods. Images similar to the tank might

cause this initialization method to fail.

4.2.3. Multilabel Relaxation

A multilabel version of gray level relaxation which

did not produce good results used one label for each gray

level present in the image. Assuming that GL is point P's

initial gray level, then P's label probabilities were

estimated as

p(GL) - .5

p(GL+1) - p(GL-1) - .2

S31

p(L+2) p(GL-2) = .049

p(ALL-OTHERS) = .002 / N

where N is the number of other possible labels, hence

p(ALL-OTHERS) is some small number greater than zero. Note

that this initialization will define labels outside the gray

level range. This causes no problems because it is

guaranteed that the probabilities of these labels will only

be attenuated from one iteration to the next.

This method would theoretically allow points of

similar gray level (not necessarily identical) to reinforce

one another, eventually causing a shift not to the two gray

level extremes, but to the levels which best represent the

gray level of the region to which the point belongs (not

unlike converting a histogram into many spikes). However,

experiments showed that a very slight noise, cleaning was the

only effect that could be noticed after many iterations.

This can probably be attributed to the lack of any high

initial probabilities; it would take much longer for the

change to become noticeable. Variations, including setting

the probabilities of labels within +2 or -2 levels to the

same initial estimate, did not provide much improvement.

Of the variations on light/dark relaxation, that

using the midpoint of the image's histogram for

initialization purposes is certainly the least complex,

though perhaps prone to noise-caused misclassification.

Using the mean will allow most cases to be handled with the

- 32 -

possibility that some points may be incorrectly biased

toward the wrong label. It requires only slightly more

computation than that using the midpoint. Fitting Gaussian

curves more closely matches a gray level range with a region

in the image, with a large increase in the computational

load. Though it can be easily extended to multilabel

relaxation, two curves do have to be fit to the histogram, a

requirement that cannot always be met. The three methods all

have their good and bad points. Choosing which is "correct"

may be an image-relative decision.

4.2.4. Hand Computed Compatibility Coefficients

In all the preceding versions of gray level

relaxation the compatibility coefficients were computed

using the package-supplied mutual information program. The

coefficients, though similar for the eight possible

directions, were not identical as they would have been with

an ideal image. In order to determine the effects of

symmetry and variations in compatibility strength an

experiment was run using manually computed coefficients.

Figure 17 shows eight iterations of the Peleg relaxation

method on the tank image using hand defined compatibility

coefficients. In this example the LIGHTILIGHT and DARK:DARK

compatibilities were considered to be much higher than those

of LIGHTIDARK. It can be seen that light and dark regions

rapidly approach the two extremes while those regions with

both light and dark points shift towards the more dominant

- 33 -

labeling. The resulting discrimination between light and

dark regions is excellent but the physical form of the tank

is no longer easily recognizable. This result is very

similar to actually thresholding a slightly blurred version

of the original image. When the LIGHTILIGHT and DARKIDARK

compatibilities were considered to be close to those of

LIGHTIDARK the end results obtained were virtually

identical, though more iterations were required.

Manually computed compatibility coefficients require

that very general information about the problem at hand be

applied to a wide domain of images with the possibility that

the results may be poor in certain cases. The use of image-

specific information allows variations in image content to

be taken into account. Though mutual information

coefficients may not be the optimal way to encode this

information, they are general enough to work well in

different domains.

4.3. Borderness

The gray level relaxation schemes presented in

Sections 4.1 and 4.2 operated on probabilistic images whose

initializations were based on histogram content, the actual

configuration of the light and dark pixels in tote original

image being ignored. The compatibility coefficients, if they

were computed from the image itself, could only partially

contain image-specific information. The results of gray

- 34 -

level relaxation can be improved if the initialization is

based on both histogram and image. This can be accomplished

by letting the light label or dark label probabilities be

reinforced on initialization if they are on the light or

dark side (respectively) of an edge. This method of

computing the initial light/dark label probabilities would

tend to deemphasize those regions in an image which are

unbounded by edges.

To produce this initialization a "borderness" image

is constructed from the initial gray level image. First a

set of masks

-1 0 1 0 1 1 1 1 1
-1 P 1 -1 P 1 0 P 0 .
-1 0 1, -1 -1 0, -1 -1 -1

is applied to each point. The edge value obtained for each

mask is added into those neighbors of point P whose mask

value is 1. This is done for all masks at each point. The

resulting borderness image will have high values only on the

light side of edges.

This borderness image can then be combined with the

gray level image to yield a probabilistic image whose LIGHT

label probabilities will be emphasized on the light sides of

edges. Let the gray level probabilities be computed as in

the previous section and let PL be the value of point P's

LIGHT label. Let B be the borderness value at point P and

BMAX be the maximum borderness value of the image. The new

- 35 -

light/dark label probabilities can then be computed as

p(LIGHT) - (A * PL) + (1 - A)(B / BMAX)

p(DARK) = 1 - p(LIQHT)

where A is between zero and one.

Using this initial probabilistic image with the

compatibility coefficients obtained from the gray level

image produced results which were better than relaxation on

the gray level image alone. Figure 18 shows the original and

eight iterations of light/dark relaxation applied to an

image of a blob. Regions in the background have been

extracted along with the blob even though they are not

bounded by strong edges. Figure 19 shows the original and

eight iterations of the combined gray level and borderness

images using values of .5, .25, and .01 for A. The blob is

strongly reinforced while the background gray level

fluctuations have largely been suppressed. Using image-

specific information in the probability initialization has

improved the results of the relaxation process.

4.4. Discussion

Objects can be extracted from backgrounds using

relaxation processes. Section 4 presented different

versions of single process light/dark relaxation which

performed quite well. The use of a light/dark relaxation

process combined with an edge/no-edge process has been found

-36 -

to produce results better than those using single processes

alone E133. Extending this concept, multiprocess relaxation

using more than two interacting processes could extract

objects from an image even better. Investigations into many

relaxation variations are currently in progress.

37

5. Concluding Remarks

This thesis has examined the concept of probabilistic

relaxation and presented a software package which allows the

researcher to quickly obtain problem-specific relaxation

programs. A variety of applications involving gray level

relaxation demonstrated the versatility of both relaxation

processes and the software package. Relaxation processes

simulate actions which natural vision systems are believed

to perform (such as the eye filling in objects from their

edges) and permit investigation into the use of multilayer

arrays (pyramids). It is virtually certain that, with the

advent of cheap processing hardware, relaxation-like

software will become very common.

- 38 -

-39-

Compatibility of

L' with L

High Low

.53' Reinforce Attenuate

01 No Effect No Effect

Fig. I Updating Rule Properties

- 40 -

4' 40

u 6oE 0 oap .

4-) CL. O 4J C C

to Ce Iul E a
o EO - C 0o F0-

0 0.,40{. I I C.,-enu ILI 0 Q a.

4p C 4p C-
u a 0) e u W WE12 ,-4 -.4 m I rI r,.1 M/

9- .,d u . . . 4 u f- /
4-)+ CL. CM 4-%+ O.*-- CN

C 0* 4-f- C I 0 - -l

400 u0p(0 u0PC
K f 0
C o .1 U- I ' -

4'' a4 N4
Cw as W

u m a.

CL a

I- EC (

Fig. 2 Package Control Flaw

- 41 -

NO ISE
POINT

DARK LIGHT

Fig. 3 initial Classification Er'ror

-42-

SGAUSSIAN

MEAN:a

MI~r OIN

DARK LIGH

Fig.4 Mdpoit, eanandGausianFittng ompaiso

43a

Fig. 5 Original Image -- Signature

44 -

Fig. 6 Original Image -- Chromosomes

- 45 -

- -- - - - - -

Fig. 7 Original Image -- Clouds

- 46 -

II

Fig. 8 Original Image -- Tank

-47-

Fig. 9 Hummel Method -- Signature

-48-

ITRA IO #3 IEA IO #4

*alp

Fig. 10 Peleg Method -- Signature

-49-

':1b 41,l4b

Fig. 11 Hummel Method -- Chromosomes

- 50 -

~~4b

* bO

Fig. 12 Peleg Method -- Chromosomes

Fig. 13 Hummel Method -- Clouds

-52-

mz;, f

ITRAIO #4.

I~ TE A IN #

Fig. 4 Peeg Mohod loud

C 53

.Aa

Fig. 15 Hummel Method -- Tank

-54-

Fig. 16 Peleg Method -- Tank

-55-

u rn

-. -

l i

Fig. 17 Effect of Hand Computed Coefficients

-56 -

Fig. 18 Peleg Method -- Blob

-57-

A=.5

A = .25

A = .01

Fig. 19 Effect of Borderness Initialization

- 58 -

LO 0)0 O I 0 N NP- N

-~ 0 -0 M' N N 0 -a M
Et I d qt '0 qt -a PN 0 M
<1 I 0 0 t N 1 0 0 N"
In 0 1' - 4 - ' ,- 0 . 0

I

NI 0r 0 a. 00 0 6 6D 0

cr
I N 0 0" 0" 0 01 0 '0 0 CL

0. Ii o. N 0 N '6- ') - '

I,, Tr I' rd 01 0 -0 I L0 "

II 1 - 0 0 n CM V 0 0 01 m 0

1 -0 LI) 0 0 0 M In) N
I 4N zr M t - N Nt r.Ird rd t U* 4:r Md M N

-I 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0r I I I I I I I I II:

N1 01

€L.

N'J 0-
~lN N 0- 0 ' I -43 - U) 14,0

~I - .' I) 2 ~1 0 i) 0" -Oo

n- 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0'- 1 I I I I l 1 I I

"-i

- IN 0 N 0 0 0 0 0 0

l iI
N I

ZI

Table 1. Hummel Compatibility Coefficients -- Signature

- 59 -

' '0 - 0 r-- r- 0- 0' O -

M .0 N rN N'' 0-

dr I D 0 N N d) 0.rd

~~(Ud -C a,00 '0 '
I ~ ! - 4 - d C 4 In IM

C d 0 to o o o dr

.0! 03 -J 0 ED 00 0'

< 0 0 0 0 0 0 0.

ri ,L

o--

....

S0 0 0 0)U d.

Table 2. Peleg Compatibility Coefficients -- Signature

0 60 0

W1

I0 0d 4 N 4 M) 01 0d

I 0 0 CI C -0 Cd - 0I Cd N N N '0 NC 0

0 0 0 0 0 0 0 0 0

I 0 0 0 4C r 0 4 '
I- I - Nq it 02 0" 0 U) qt r- I u) 0- C5) Cd 0 C) 02 C)

0M N N M"U U ' N'-I d) Cd C) "4 C) Cd C) Cd
J 0 0 0 0 0 0 0 0 0 aL

0 0 0 0 0 0 0 0 0, I I I i I I t I I :

-4~~ ~ ~ ~~ 00 MN<0=I Cd . 0 .4 4l -4 Cd -O 0 : .0 -o
0 oi -" CU 0 0- 0- " 0 -0 o

S" 4 ,0 00 "d 0 0 02 Md <MOLL 0

I- 0 0 0 0 0 0 0 0 0 0

-iI M 03 .9 -t N ,. r

1 0 0 0 0 0 0 0 0 0
I I I I I I I I I

LL:
zz

"I

-" on n on 0 0o~ o 4 0

Tabl 3. Hummel C Comaiblt Coefcet Ch)mosme

S0 0 0 0 0 0 0 0 0
_f

-i

Cf

Table 3. Hummel Compatibility Coefficients -- Chromosomes

- &l -

Ic 0 4t N'i M' 0 01 N
M " " id a' Cd 0 1- w

-) 0 - 0 C) N

"I .4 - 0 - 0 0 0 0,
~I -0 10 -0 -0 -0 -4 10 U)

I-
I1 0 1 N 0N .) a) 0

I '- C') 0 N 0 M')I 0 0 N N *' - ' .c
11 r-N -4 M' Ni -D CL.

~I NNNNN N N 4-1

1~ 0 0 0 0 0 0 00"-
0
0.

IM l a.0 "
0 in N I- M rd M 0

<21 -40 N) M -D 0 0 3 - < Li

n I M 0 'w C' -0 a, ' It
I N N v M Nj N, N N

1 0 0 0 0 0 0 0 0

--j i OJ , a' t - C N"
inU 0) ' 0'. cd '-' "t

-I 0 0 0 0 --- -

'T I - 4 - 4 - -

0

-I

Table 4. Peleg Compatibility Coefficients -- Chromosomes

.. 62 I

W 1O CV r d a-
0 O N-O0 0 qT 0

Lrt LO It 0i 4t M0~ ~
<I O ~ O 01 0 ' Q, 0 0. a, 0-~I000 0 0 0 0 0 0

:!r 1 0 0 0 0 00 0 00

1t M M 0 N

Ue4.

Mr MIMM- 0 a.

< I0- L , 0 r d , r i

0 ~ ~ ~ ~W 0

Ci -O Cd 0- 0 N 0 0 0im0

0I N 0 - 0 a, 0r It Ln -0 0d10J.
01 -Oj M r.- ' M~ 0- 0 - rd

1~ 0~ 0r in i 4 -4 04 -0 -
II0 0 0 0 0 0 0 0 0

010 0 0 0 0 0 0 0 0 -

I

Table 5. Hummel Compatibility Coefficients -- Clouds

----- 8 3 ----

I

"Orr - - '-4------W

I N 0 03 C~t C~) (01 ' 0 0I
LX 1 0, 0 N 0 03,I -

~~~~I~. -- 4 n N -i ' ~

-4 00 n 03 r tO 0 M N
01. M w~ I> M' (' 0 N C

6 3 3 0 6 0 6 03 ',

a- o

~It '0 II- a'N ' - - 0
<I N' In It r N (t N r (0 LL 0

SI LO-0 MI N 0 In -NU n
P- N 0I a (0 In 5 0 0 N3I

I- 1 ' 0 M' M' '0 It N 0

- 0 0 i 0 0 0 0

T i . e o i o1 -- Ml

N- ('l .4 '0 I ('U -'

i n 0 M N 0
NI W 0 N' M qr 10 '0
II P,' N n w3 N In N, I

r I -

01-

CI

Table 6. Peleg Compatibility Coefficients -- Clouds

-64 -



I N N N '- C~I - - N N

<

NI

I C) -O Cif C. C", 0- N" 0. -

"0' I D ID I'D .,- -.., 0- N ID
, I 4 -4 *, .,- Ci ,-', -4 -4 -.4

1 0 0 0 0 0 0 0 0 0

N M

0i 0 o 6 0 6 0 0 0 a

n.0i

< i

0 0, 0 0, N 0- 0- M 0
<I 0 0 0 0 0 i N m 01 <nLL 0

I 0 0 0 0 0 0 0 0 0 n

- o 6 6 6 0 0 0
Ii I I I I I I I M

.--I

Jq

-0 M

0~ 'r -r o4 C

0! 0 0 0' 0 0 0 N 0 0

<- 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0

6 6 o o 6 o o a a

I- 0 0 Z a. 0 LL 0 M

ZI

Table 7. Hummel Compatibilityj Coefficients - Tank

- 65 -



J~~L I dCi0.'C 0 IM N

'C I 0N -4 C 01 CI 0 -0

~~l N 0"0- )~ 01
a I L0 -0 '0 0 0 0 N~ '0

i U' .. 4 -0 (D -n .40

II -4 CII 04 0I 0 A
01 IA ' 01 01 01 01 01 0

WI IA N. o0- CI A

0- 0-

'I0 6 0 -

-

I0 CAN C N C ) A 0
*-l L- M" '42 -0 nI IA 0 'CL.

0I IA ND 0 C - C) -

M i 0 0 0 0 0 0 0 0
-4 -4 -4

u12

zz

Tal .PlgCmaiilt ofiins Tn

C) 0 0 0 .- 0- N N C6



-67



SETUP

SYNOPSIS

setup CChelp][h]Cp]] #labels [fcols #rows]

DESCRIPTION

Setup is a Shell program used to create the relaxation and

compatibility coefficient programs according to the needs of

the user. The arguments determine the method of relaxation

to use, the number of labels in the relaxation label set,

and, if something other than the default 3 by 3 neighborhood

is desired, the number of columns and number of rows which

can contain the desired neighborhood. Setup will construct

and compile the programs, leaving them in the users current

directory under the names "*compat" and "*relax", where '*"

is either 'h' or 'p' depending on the relaxation method

chosen. If the first argument is "help" a short description

of the package will be printed. A usage example is:

setup p 2

This will set up both a coefficient computation program and

relaxation program for two labels and a 3 by 3 neighborhood

following the Peleg formula for probabilistic relaxation.

DIAGNOSTICS

Only a "USAGE... " line if the user mistypes the calling
syntax.

FILES

/b/gpstar/par, /b/gpstar/[hp~compat.c. /b/gpstar/Chp]relax. c

.. 68 .



COMPAT

SYNOPSIS

[hp~compat probfile comfile [nbrfile]

DESCRIPTION

Comat is a program created by the setuD routine which will

compute the mutual information compatibility coefficients

for either the Hummel-Zucker or the Peleg relaxation

formula. The initial letter in the name reflects the method

chosen by the user. The arguments to the command specify the

probabilistic image from which the coefficients are to be

computed, the file to which the coefficients are to be

stored, and optionally, a file which contains a nonstandard

neighborhood definition. A usage example is:

pcompat tank. p cfile. tank

This will take the probabilistic tank image, compute

coefficients according to the Peleg formulation, and place

them in the file 'cfile.tank' for later use by a Peleg

relaxation program.

DIAGNOSTICS

Only a "USAGE..." line if the user mistypes the calling
syntax.

FILES

./hcompat or ./pcompat

- 69 -



RELAX

SYNOPSIS

Chp3relax probfile comfile C[n nbrfile]Cs N Ni N2... 33

DESCRIPTION

Relax is a program created by the setup routine which will

compute one iteration of probabilistic relaxation according

to either the Hummel-Zucker or the Peleg relaxation formula.

The initial letter in the name reflects the method chosen by

the user. The arguments to the command specify the

probabilistic image file which is to be replaced by one

iteration of relaxation, the coefficient file which is to be

used in the computation, and optionally, a neighborhood

definition file. If the Peleg method is chosen then the

user may also use the 's' argument to specify that the

labels should be grouped into N sets of size N1, N2, etc. A

usage example is:

prelax tank. p cfile. tank

This will compute one iteration of Peleg relaxation on the

probabilistic tank image using the coefficients in the file

'cfile. tank'.

DIAGNOSTICS

Only a "USAGE..." line if the user mistypes the calling
syntax.

FILES

./hrelax or ./prelax

- 70 -



DISPLAY

SYNOPSIS

display probfile imagefile #labels

DESCRIPTION

Dislau will take a probabilistic image file and convert it

into a gray level image file for subsequent display. If the

"#labels" argument is 2 then the maximum label at each point

will be displayed as a range of gray levels depending on

label strength. If "#labels" is greater than two the maximum

label at each point will be displayed as a constant distinct

gray level regardless of label strength. A usage example is:

display tank.p tank.g 2

This will take the probabilistic tank image and convert to a

varying gray level image. The gray level image could, for

example, be displayed on the GRINNELL display system.

DIAGNOSTICS

Only a "USAGE... " line if the user mistypes the calling
syntax.

FILES

/usr/bin/display

- 71 -



DEFNBR

SYNOPSIS

defnbr nbrfile ncols nrows

DESCRIPTION

Defnbr is an interactive program used to define a

nonstandard neighborhood for each point. The "nbrfile"

argument specifies the file to which the neighborhood

definition is to be written. The number of columns and rows

which can contain the neighborhood must also be specified.

The use of the program is straight forward. An example of

calling syntax would be:

defnbr nfile. 1 5 3

The user has decided to try a 5 column by 3 row

neighborhood. The program will ask which is to be considered

the point in the center and whether a certain neighbor is to

be considered in the neighborhood.

DIAGNOSTICS

Only a "USAGE..." line if the user mistypes the calling
syntax.

FILES

/usr/bin/defnbr

- 72 -



DEFCOtj

SYNOPSIS

defcom compile *labels Cnbrfile]

DESCRIPTION

Defcom is an interactive program used to install hand

computed compatibility coefficients for each neighbor of a

point. The arguments specify the file to which the

coefficients are to be written, the number of labels in the

relaxation process, and optionally, a file which specifies a

nonstandard neighborhood. The use of the program is

straight forward. An example of usage is:

defcom cfile. tank 2

The user wishes to define coefficients for a two label

relaxation process using the standard 3 by 3 neighborhood.

DIAGNOSTICS

Only a "USAGE..." line if the user mistypes the calling
syntax.

FILES

/usr/bin/defcom

- 73 -

kI



IAE FILE FORMAT

DESCRIPTION

Each probabilistic image used by the software package

contains a header specifying number of columns, number of

rows, and bytes per pixel. This header is 6 integer words

long:

headerCO] = 0

header[1] = # of cols

headerC2] = 0

headerE3] = # of rows

header[4] = 0

header[5] = 4

The image data is arranged so that the labels, then columns,

then rows change, i.e., the fastest changing value would be

the label represented. Each label value should be a floating

point number (4 bytes) in the range 0 -> 1. The sum of the

label values at each point should be 1. Were the user to

declare an array to reflect the format of the image data,

the declaration would be:

float pimage [NROWS] CNCOLSJ [NLABELS]

If the original probabilistic image file should not be

modified by the relaxation routines then it should be

copied, using the copy with the relaxation programs.

- 74 -



COEFFICIENT FILE FORMAT

DESCRIPTION

Each coefficient file contains the raw coefficients and

nothing else. Each coefficient is a double precision

floating point number (8 bytes). The coefficients are

arranged in such a way that the particular neighbor being

considered changes slowest, i.e., if one were to declare an

array to contain the coefficients it would be:

double coeff ENNBRS] ENLABELS] tNLABELS]

The first label is considered to be the point's label, the

second, the neighbors label. Both hcompat and Dcompat will

create coefficient files with the correct format.

- 75 -



NEIGHBORHOOD FILE FORMAT

DESCRIPTION

Each neighborhood file contains a 4 integer word header

specifying the number of columns and rows in the

neighborhood and the coordinates of the point which is to be

considered as the neighborhood's center. The neighbors are

defined as a column offset from the center point and a row

number in the neighborhood. For example, the upper right

hand corner neighbor in a 3 by 3 neighborhood around a point

would be represented in the neighborhood file as a +1 column

offset and as on row O, hence its entry in the file would be

(1,0). If the neighborhood format were declared as an array

it would be:

int nbrhood ENNBRS] [23

where the C23 specifies both a column offset and a row

number.

-76-



Bibliool'aphu

-77



C1] A. Rosenfeld, R. Hummel, and S. Zucker, "Scene Labeling
by Relaxation Operations," IEEE Trans. Syst., Man, and
Cybern., vol. SMC-6, pp. 420-433, June 1976.

C2] R. Hummel and A. Rosenfeld, "Relaxation Processes for
Scene Labeling," TR-562, Computer Science Center, Univ.
of Maryland, August 1977

E3] S. Zucker and R. Hummel, "Computing the Shape of Dot
Clusters, I: Labeling Edge, Interior, and Noise
Points," TR-543, Computer Science Center, Univ. of
Maryland, May 1977

£4] A. Lev, S. Zucker, and A. Rosenfeld, "Iterative
Enhancement of Noisy Images," TR-445, Computer Science
Center, Univ. of Maryland, March 1976

r5] J. Eklundh, H. Yamamoto, and A. Rosenfeld, "Relaxation
Methods in Multispectral Pixel Classification," TR-662,
Computer Science Center, Univ. of Maryland, July 1978

£6] A. Rosenfeld, "Iterative Methods in Image Analysis,"
Prcc. IEEE Conf. on Pattern Recognition and Image
Processing, pp. 14-18, June 1977

£7] S. Peleg and A. Rosenfeld, "Determining Compatibility
Coefficients for Curve Enhancement Relaxation
Processes," IEEE Trans. Syst., Man, and Cybern., vol.
SMC-8, pp. 548-555, July 1978

£8] S. Peleg, "A New Probabilistic Relaxation Scheme,"
TR-711, Computer Science Center, Univ. of Maryland,
November 1978

£9] D. Ritchie and K. Thompson, "The UNIX Time-Sharing
System," CACM, vol. 17, Number 7, July 1974

£10] S. Bourne, "The UNIX Shell," Bell System Technical
Journal, Vol. 57, No. 6, Part 2, pp. 1971-1990, July
1978

£11] A. Danker and A. Rosenfeld, "Strip Detection Using
Relaxation," TR-725, Computer Science Center, Univ. of
Maryland, January 1979

£12] G. Fekete, "Relaxation, Evaluation and Applications,"
Master's Thesis, University of Maryland, 1979

£13] A. Danker and A. Rosenfeld, "Blob Extraction by
Relaxation," TR-795, Computer Science Center, Univ. of
Maryland, July 1979

- 78 -





UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Abstract (continued)

running on a PDPll/45 computer. Modular in form, it frees the
researcher from the tedium of hand coding relaxation processes
for each variation of relaxation tested. The application of
relaxation to a threshold-like gray level modification scheme
demonstrates the utility of the package.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEWhien Date Entered)


